skip navigation

Florida Gulf Coast University

Website Directory  

Environmental Health and Safety

General Lab Health and Safety

 
 

Introduction 

Responsibilities

College Dean
Department Chairman or Chairwoman
Principle Investigator and Academic Laboratory Leader
Laboratory Staff or Student
Research Safety Committee
Environmental Health and Safety Department

Project Review/Approval  

Academic Laboratories
Research
Human Subjects
Animals in Research

Identification and Control of Hazardous Areas

Controlled Access
Housekeeping
Visitors in Laboratory Areas
Custodial Staff
Minors in the Laboratory
Hazard Warning Sign

Hazardous Material Storage

Labeling
Refrigerators and Freezers
Orphan Chemicals

Biohazardous Waste

Training
Categories
Packaging
Transport

Chemical Hazardous Waste

Labeling
Storage
Records
Minimization
Training
General Laboratory Waste

Radioactive Wastes

Hazard and Exposure Control

Engineering Controls
Ventilation
Biological Safety Cabinets
Fume Hoods
Personal Protective Equipment (PPE)
Laboratory Clothing
Gloves
Eye and Face Protection
Respiratory Protection
Hygiene

Removal or Servicing of Laboratory Equipment

Safe Work Practices

Chemical Hygiene
Compressed Gasses
Cryogenic Liquids
Ergonomics
Glassware
Sharps

Laboratory Facilities

Electrical
Corridors
Renovation of Laboratory Spaces

Use of Laboratory Equipment

Autoclave
Centrifuge
Cooling Apparatus
Eyewash Station/Emergency Shower/Drench Hose
Heating Device (Other)
Microwave oven
Lasers
Ultraviolet (UV) lights

Emergency Response 

First Aid Kit
Chemical Spill
Fire
Accident Reporting

 Special Topics

Animals
Arsine
Biological Safety
Corrosives
Ethers
Explosives
Fluorine Gas
Human Subjects of Research
Hydrofluoric Acid
Mercury
Osmium tetroxide
Perchloric Acid
Radioactive Material Use
Reactive Metals

Definitions


INTRODUCTION

It is the responsibility of each principal investigator in a research laboratory and faculty member teaching an academic laboratory class section to address safety as a first priority. The authors of this manual recognize the level of knowledge and experience faculty members bring to their laboratory operations and classes, and we all rely on it to ensure the continuing safe operation of research and teaching laboratories at FGCU.

In order to be effective and inspire confidence, a laboratory safety program should establish common requirements for all laboratory activities. This manual provides these minimum common requirements relevant to general laboratory operations. The requirements laid out in this manual are the benchmarks by which EH&S will document safe laboratory operation during inspections.

Due to the variety of agents, equipment, and procedures potentially in use in laboratories at FGCU, it is not possible to anticipate every possible event. However, it is important for you as the person in charge of a laboratory, a laboratory worker, or a student participating in a laboratory section to know what the University expects of you.

Use this manual as a guide and supplement to the more specific information developed for each individual laboratory or research project. Members of the Environmental Health and Safety Department, and the Research Safety Committee are available to provide you with assistance in developing, implementing, and maintaining your laboratory safety program.

Back to the top


RESPONSIBILITIES

College Deans

The College Dean is responsible for providing the space, equipment, and funding necessary for safe laboratory operation.

Department Chairmen and Chairwomen

Department Chairmen and Chairwomen are responsible for enforcing and regulating laboratory safety in their Departments.

Principal Investigator / Academic Laboratory Leader

The Principal Investigator (PI) or Academic Laboratory Leader (ALL, the Faculty member in charge of an academic laboratory section) is responsible for ensuring all laboratory activities under his or her control meet or exceed applicable standards and regulations, and present a minimal level of risk to laboratory participants. This responsibility includes the identification of hazards and the assessment of all risks associated with laboratory operations.

The PI or ALL shall provide and document instruction to ensure that staff and/or students are aware of hazards involved with their laboratory tasks, and the equipment and practices required to safely perform their assigned tasks.

The PI or ALL shall ensure necessary safety equipment is available in the laboratory, used when required, and adequately maintained.

The PI or ALL shall establish and annually review emergency procedures.

The PI or ALL shall arrange for immediate medical attention for injured personnel and report incidents of injury or property damage as required.

See http://www.fgcu.edu/EHS/Emergencies.html.

Laboratory Staff or Student

It is the responsibility of each person working in a laboratory to be aware of the risks associated with her or his assigned duties, and to comply with the procedures provided. Report any unsafe conditions or practices to the PI, ALL, or to EH&S. Report all incidents resulting in injury, property damage, or exposure to a hazardous agent to the PI, ALL, or EH&S. See http://www.fgcu.edu/EHS/AccidentInvestigation.html.

Research Safety Committee

The Research Safety Committee reviews, approves and monitors research projects at FGCU involving specific devices and materials that may present unique hazards to staff. See http://www.fgcu.edu/orsp/Compliance.html.

Environmental Health and Safety Department

The Environmental Health and Safety Department (EH&S) provides consulting, training, and compliance verification support for laboratory matters relating to regulatory and policy compliance, safety, risk, and health in the laboratory. EH&S will perform semiannual inspections of all laboratory spaces to verify compliance with this manual, and provide the results to the appropriate college Dean(s).  

Back to the top


PROJECT REVIEW AND APPROVAL

Academic Laboratories

The sponsoring academic department approves tasks carried out in academic laboratory sections as part of the curriculum.

Research Laboratories

The PI is ultimately responsible for approving tasks and ensuring the safe operation of the research laboratory.

The FGCU Research Safety Committee (RSC) reviews, approves, and monitors research projects at FGCU involving the specific devices, materials, and conditions below.

• Material or process resulting in an acutely hazardous waste

• Non-ionizing radiation generating device

• Work requiring use  of BSL-3 facilities

• Recombinant DNA molecules

• Radioactive material

• SCUBA equipment

• Select agent or toxin as defined in 42 CFR part 73

• X-ray generating device

• Research performed by minor(s) (e.g.: science fair project) under the age of 18 unless the minor is a registered student or is participating in a supervised FGCU program

Human Subjects

Research involving Human Subjects requires approval from the FGCU Institutional Review Board for the Protection of Human Subjects in Research and Related Activities (IRB).

See http://www.fgcu.edu/orsp/compliance.html.

Animals in Research

Research involving the use of animals requires additional approval by the FGCU Institutional Animal Care and Use Committee (IACUC).

See http://www.fgcu.edu/orsp/compliance.html.  

Back to the top


IDENTIFICATION AND CONTROL OF HAZARDOUS AREAS

Controlled Access

Controlled access to laboratories is important for both safety and security. Each PI or ALL is responsible for controlling access into their laboratory.

Only people directly supervised, or those trained to recognize the hazards present in the lab and the practices and techniques required for working safely in the lab, are to be permitted routine access..

Doors to laboratories and restricted access areas must not be propped open.

Housekeeping

Keep the work are clean and uncluttered, with chemicals and equipment being properly labeled and stored. Clean-up the work area on completion of an operation, and at the end of the work day.

Visitors in Laboratory Areas

Each PI or ALL is responsible for the safety of visitors to his or her laboratory, including training, use of personal protective equipment, paper work completion, and other requirements.

Custodial Staff

Custodial services personnel do not work in laboratory areas unless supervised by the PI, ALL, other laboratory staff member, or the work is in accordance with a previously approved set of written performance specifications.

Minors in the Laboratory

Do not permit minors under the age of 18 to work in the laboratory unless the minor is a registered student or is participating in a supervised FGCU program and has met the following criteria:

• Parental permission to participate documented in writing.  

• The laboratory is in full compliance with all safety regulations and programs.

• The laboratory provides and documents the prerequisite safety and hazard awareness training.

• The minor works under the direct supervision of the PI or senior lab staff whenever she or he is performing laboratory or scientific procedures.

• The minor is never alone in the lab.

• The minor may not use or handle large gas cylinders, explosives, select agents, highly toxic substances, DEA controlled substances, or level 3 or higher biological agents.

• Use of radioactive materials requires specific approval of the Radiation Safety Committee.

• Use of Lab Animals requires permission of the FGCU Institutional Animal Care and Use Committee and EH&S.

• Corrosives: Requires compound specific training by host lab PI or ALL

• Use of Biosafety Level 2 or recombinant DNA materials requires approval of the Research Safety Committee.

• Minors may not operate State vehicles.  

Hazard Warning Sign

Post signs on all doors to laboratory spaces to identify the potential range of hazards, the level of PPE required entering the space, and emergency contact information. To promote consistent content and layout of hazard warning signs, EH&S will provide them upon request

The signs have four distinct categories reflecting the potential hazard:

NOTICE – states a policy related to safety of personnel or protection or property but is not for use with a physical hazard.

CAUTION – indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury.

WARNING – indicates a potentially hazardous situation that, if not avoided, will result in death or serious injury.

DANGER – indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

Common hazards found in laboratories that are required to be identified on signs are biohazards, radiation, laser light, chemical oxidizers, explosive or flammable liquids, latex glove use, carcinogenic or mutagenic compounds, cryogenic hazards, compressed gas storage, strong magnetic or RF field, elevated noise level, and UV light.

The PI or ALL is responsible for obtaining and posting hazard notice signs as necessary. Place signs in permanent frames that protect the sign, and post signs only while a hazard exists. Remove or alter the sign when the source of danger is no longer present.

Hazard notice postings will show the name with office, home and/or mobile phone numbers of the PI or ALL, his/her alternate, and a third departmental contact. The ALL may delegate this responsibility to a laboratory manager familiar with the laboratory. As an alternative, the posting may show the names with work numbers and the number for the University Dispatcher. To use this alternative, the PI or ALL must provide home and mobile phone numbers to the University Police Dispatcher.

Back to the top


HAZARDOUS MATERIAL STORAGE

See the full Chemical Hygiene Plan at the EH&S website.

Labeling

Label all chemical storage containers, both hazardous and non-hazardous with the product’s name. The chemical formula alone is not acceptable. Non-hazardous materials require labeling to differentiate non-hazardous materials from hazardous materials not appropriately labeled.

Label non-chemical hazards with appropriate information to identify the type and degree of hazard (e.g. White I or Yellow II for ionizing radiation).

Label doors to storage cabinets, refrigerators, freezers, etc with one of the four distinct hazard identification levels described above, and the phrase “hazardous material.” Use a lock to secure hazardous material storage containers located outside of a laboratory or other regulated area.

Refrigerators and Freezers

Household refrigerators and freezers are not equipped with explosion-safe controls. Do not use them to store flammable liquids.

Label every refrigerator, freezer and cold room suitable for storage of flammables, biological or radiological materials as appropriate for the contents.

Label household refrigerators and freezers with “Danger-Do not put flammable liquids in this refrigerator/freezer.”

Label units for use with food e. g., ‘No Food,’ or ‘Food Only.’

Minimize the use and storage of flammable or toxic liquids in cold rooms. These rooms are not fire rated and the lack fresh air ventilation makes them a confined space.

Orphan Chemicals

When purchasing a hazardous chemical balance the economy of bulk purchasing with the expense and hazard of surplus chemical stock storage and disposal. “Orphan Chemicals”, chemicals for which there is no current planned use, should be kept for no more than one year as stock before considering as surplus and requiring disposal.

Back to the top


BIOLOGICAL WASTE

See the full Biomedical Waste policy at the EH&S website.

On-site storage of biological waste shall not exceed 30 days. Sharps may be stored in appropriate containers until full, but sharps containers used for other than sharps waste must be treated as biohazardous waste and disposed within 30 days of initial accumulation.

Room 267, Whitaker Hall is the main on-site storage location for biomedical waste. Departments may designate other rooms for temporary storage upon approval by EH&S.  

 

 

Training

Train all employees who handle biological waste regarding its proper handling. Train new employees before they handle biological wastes. Provide training informally in the lab setting, or through formal training programs set up by individual departments or divisions. Maintain records of the training session for each employee, along with an outline of the training program for a minimum period of three (3) years.

Repeat or supplement training as necessary to address changes in procedures or materials, following a prolonged (> 2 months) lapse in work, or other evidence of need.

 

 

Categories

     -Non-infectious Biological Waste

This category includes biological materials not contaminated with any of the biohazardous wastes listed below. Examples include, but are not limited to, sterile or unopened biomedical materials, culture dishes, tissue culture flasks, and Petri dishes.

This category does not include red bags, anything with Biohazard symbol, used tissue culture, or molecular biology lab ware. Empty p-listed waste containers must be triple rinsed before disposal, and the rinsate saved for disposal as a hazardous waste.

     -Biohazardous Waste

Biohazardous waste is any solid or liquid waste which may present a threat of infections to humans.  These wastes include human, animal, and plant pathogens, recombinant DNA, microbiological cultures, human and primate blood or blood products, and other potentially infectious material. Also included are items containing or contaminated with any of these.  See http://www.fgcu.edu/EHS/BioHazardousWaste.html.

     -Mixed Radioactive/Biological Waste

Any biological waste that is tagged or otherwise combined with a radioactive isotope. This category also includes biological wastes containing an amount of naturally occurring radioactive material measurable with a survey meter.

     -Mixed Chemical/Biological Waste

Any biological waste combined with a hazardous chemical. This category also includes biological wastes containing an environmentally significant amount of a naturally occurring hazardous material.

     -Animal Carcasses

Any dead vertebrate animal (including birds), or animal part.  

 
Packaging Waste

    -General Laboratory Waste and Non-infectious Biological Waste

Place materials into a container for disposal as solid waste. Any broken glassware or pipettes should be placed in rigid, cardboard, labeled “Broken Glassware” boxes. Needles, razor blades, scalpels, and other clean, but sharp items must be packaged in rigid, plastic, labeled “Sharps Containers”.

    -Biohazardous Waste

Deactivate infectious wastes, or place them into the biohazardous waste storage containers for disposal, within 24 hours of their generation. Label the waste storage container with the date the first waste is placed into the container. Packaged wastes may not be stored longer than 30 days. Waste containers may not be stored in classrooms, hallways, or other readily accessible public areas.

    -Mixed Radioactive/Biological Waste

Inactivate the biological component of mixed radioactive/biological waste using steam-sterilization or chemical inactivation as appropriate prior to its release to Radiation Safety for disposal as radioactive waste. If it will not be possible to safely inactivate the biohazardous component of the waste, contact the Radiation Safety Officer for guidance prior to generating the waste.

    -Mixed Chemical/Biological Waste

Inactivate the biological component of mixed chemical/biohazardous waste prior to its release for chemical disposal. Take the appropriate precautions to prevent the generation and release of toxic chemicals during the inactivation process. Do not autoclave flammable or reactive compounds due to the explosion hazard. If it will not be possible to safely inactivate the biohazardous component of the waste, contact EH&S for guidance prior to generating the waste.

    -Animal Carcasses

Dispose of all animals (vertebrates) and parts as biohazardous waste; do not dispose of animal carcasses as solid waste. Carcasses must be double bagged (one sealed plastic bag placed inside another sealed plastic bag). Tape the animal's teeth or claws if they present the possibility of puncturing the bag.

    -Biohazard Bags

Maintain written documentation that red bio-hazard bags used meet the following requirements of the Florida Administrative Code 64E-16:

• An impact resistance of 165 grams and tearing resistance of 480 grams in both the parallel and perpendicular planes with respect to the length of the bag. Determine impact resistance using ASTM D-1709-91, and tearing resistance using ASTM D-1922-89.

• The total concentrations of lead, mercury, hexavalent chromium, and cadmium must be no greater than 100 ppm for the dyes used in coloring the bags.

    -Sharps Containers

Dispose of sharps at the point of origin into single use or reusable sharps containers. Seal the sharps container when ¾ full. All outer containers must be rigid, leak-resistant and puncture-resistant. Reusable outer containers must be smooth, easily cleanable materials and decontaminated after each use.

    -Labeling

Use containers with the preprinted universal biohazard symbol and the words "biomedical," "biohazardous," or "infectious.”

 

Transport

Biohazardous waste transported outside the laboratory, but remaining on campus (i.e., to an autoclave or incinerator), must be in a closed leak-proof container labeled "biohazard". Only personnel trained in the handling of biohazardous materials, including isolation and clean-up of spills may transport these wastes.

Back to the top


CHEMICAL HAZARDOUS WASTE

See the full Hazardous Waste policy at the EH&S website.

It is the PI or ALL’s responsibility to ensure proper management, and storage of all hazardous wastes generated by their laboratory.

Labeling

Label hazardous wastes at the point of generation. Remember that a material does not become a waste until it no longer has an intended use.

Using permanent ink, write legibly on the label:

·         The phrase “Hazardous Waste”

·         The chemical name(s) of the constituents - Avoid using chemical formulas

·         The percents of chemicals - Percents must sum to 100

·         The date waste is first added to the container

·         The name(s) of the responsible PI, ALL, or designated person 

Storage

Do not dispose of hazardous wastes down drains, in the trash, or by evaporation. Hold all hazardous waste in the generating location (or other defined satellite accumulation area) for the next scheduled pick-up and disposal. Contact EH&S to discuss options if storage presents a problem.

Collect hazardous wastes in capped containers compatible with the waste. Milk jugs are not acceptable. Use an appropriately sized container for the waste generated; under-filled containers cost the same for disposal as a filled one. Do not overfill containers; leave a minimum 1” of headspace. Do not mix mercury or other metals, halogens, radioactive materials, or biohazardous materials with wastes.

Records

Maintain all records related to hazardous waste generation, disposal, and training for a minimum of 3 years. Currently all disposal records are maintained by EH&S.

Waste Minimization:

Federal and State regulations mandate waste minimization by hazardous waste generators. Pollution prevention (P2) reduces or eliminates waste created at the source, avoiding the generation of a waste. The use of alternative materials can provide equivalent results while preventing worker health risks.  P2 protects the environment by reducing the risk of toxic releases, and saves money by avoiding waste handing, disposal and treatment costs.

Take reasonable and appropriate actions to minimize the amount of hazardous waste generated by your teaching or research activities. Examples of these actions may include:

• Use of surfactant cleaning compounds instead of chromic acid

• Use non-formaldehyde based fixatives in place of formalin, and formaldehyde-free preserved specimens

• Use non-hazardous scintillation fluids in place of toluene or xylene.

• Balance the economy of purchasing larger quantities with the need for storage space and the significant costs for disposal.

• Reuse and recycling of hazardous materials for subsequent activities.

For assistance or questions, please contact EH&S or the Florida DEP RETAP program:

http://www.dep.state.fl.us/pollutionprevention/retap.htm

 
Training

PI’s, and ALL’s must ensure all their students and staff handling or performing activities that may generate a hazardous waste receive proper training within six months of assignment. Until trained, direct supervision is required. This training must include:
• An overview of the Resource Conservation and Recovery Act (RCRA) regulations.

• Identifying and labeling wastes

• Accumulation limits

• Waste minimization

• Containers and segregation of wastes

• Special wastes (P, K, and U)

• Waste pick-up and disposal

• Spill clean-up

Back to the top


RADIOACTIVE WASTES

See the Radiation Safety Manual for information.

Back to the top


HAZARD AND EXPOSURE CONTROL

Engineering Controls

General Ventilation

Properly managed, room ventilation can dilute and help to control the spread of hazardous and noxious agents within and from the laboratory.

Where hazardous or noxious agents are used, the ventilation supply air must be single pass at a rate sufficient to exchange the occupied space volume a minimum of 6 and no more than 10 times per hour. Run exhaust hoods in the laboratory during the use of hazardous or noxious agents to provide proper room ventilation. Ensure supply air vents are free of obstructions to allow adequate airflow and mixing through the laboratory.

Keep laboratory and autoclave doors closed, as hazardous and noxious agent containment is partially dependent on proper airflow balance between laboratory and other adjacent spaces.

In the event of failure of the laboratory ventilation system:

 • Immediately stop working with and contain hazardous or noxious agents.

• Leave the laboratory.

• Notify EH&S (590-1414) and the Physical Plant Department Work Management Center (590-1370).

 Biological Safety Cabinets

Biological safety cabinets are ventilated boxes that give users a degree of protection against hazardous particles and aerosols generated within the cabinet. There are different levels of protection afforded by biological safety cabinets depending on the design.

Install, maintain, and use biological safety cabinets in accordance with the CDC document Primary Containment for Biohazards: Selection, Installation, and Use of Biological Safety Cabinets  *Alert: Purifier* Vertical Clean Benches and Filtered PCR Enclosures do not provide user protection. Biohazardous materials, toxins and radionuclides should be handled in Class I or Class II biological safety cabinets.

Fume Hoods

Use fume hoods to control exposures when handling hazardous or noxious materials. If the hood airflow monitor goes into alarm, stop and secure the work, shut down the hood and arrange for repair.

Conduct all work with a potential for airborne exposure to a carcinogen or reproductive hazard in a chemical fume hood.

Conduct any work involving a toxic compound with a potential inhalation exposure within a fume hood.

Conduct potentially explosive work within a fume hood with additional shielding.

Operate fumes hoods with the sash closed except when necessary to manipulate or set-up the experiment. The sash should not be opened more than 18 inches in height unless necessary to move a piece of equipment in or out of the hood. Locate water, air, vacuum, gas, and electrical controls outside of the hood.

Do not store materials in fume hoods as the unnecessary clutter interferes with airflow through the hood, and increases the opportunities for spills or explosive reactions. Certain hoods designated as hazardous waste satellite storage sites are exceptions to this. Use small tissues such as KimWipes® with care inside of fume hoods as they can enter the exhaust stream and clog the vanes and motors.

Check to ensure hoods are operating and have a current certification before each use.

Specialized ventilation systems, such as small, HEPA-filtered enclosures, snorkel trunks, and canopy hoods, may be required in certain instances to control fine powders or processes which release heat or vapors and do not fit within a conventional chemical fume hood or biological safety cabinet.

Personal Protective Equipment (PPE)

Laboratory Clothing

Employees and students must wear shoes and clothing appropriate for the agents and equipment in the laboratory.

Use impermeable aprons over regular laboratory clothing when handling hot liquids, very cold substances such as liquid nitrogen, or hazardous chemicals such as corrosives.

Do not wear protective coats, aprons, or gloves outside of laboratory areas. Launder and dispose of lab coats in a manner appropriate for the potential hazard. Do not take contaminated laboratory coats or other protective clothing home to launder.

Gloves

Gloves can provide protection against specific chemical agents, extreme temperatures, and traumatic injury. Proper glove material and construction is important; consider permeation rates, contact time, and dexterity when making a selection.  

Gloves used to handle chemical and biological hazards are potentially contaminated. Remove these gloves before opening refrigerators, incubators, room doors, or answering the telephone. Hand washing is required after removal of gloves. Discard gloves into appropriate waste containers after handling chemical or biological hazards.

Eye and Face Protection

Employees and students must use eye protection that conforms to American National Standards Institute, Z87.1-1994 when exposed to eye or face hazards from flying particles, molten metal, liquid chemicals, acids or caustic liquids, chemical gases or vapors, or potentially injurious light radiation.

Employees and students who wear prescription lenses while engaged in operations that involve eye hazards shall wear eye protection that incorporates the prescription in its design, or wear eye protection (goggles, face shield, or over the glasses protection) that fit over the prescription lenses without disturbing the proper position of the prescription or the protective lenses.

Contact lenses are not recommended, as they may increase the wearer’s risk when exposed to a hazardous agent. Persons exposed to hazardous chemicals must not wear contact lenses unless wearing goggles to provide full protection.

Respiratory Protection

Wear respiratory protection in situations where engineering and other controls cannot feasibly contain a respiratory hazard. Implementing the use of respiratory protection requires compliance with the FGCU Respiratory Protection Program.

EH&S must approve in writing all required respirator selection and use, and will assist with properly training and fit-testing respirator wearers for each specific respirator.

Hygiene

Pipetting by mouth is prohibited.

Eating, drinking, chewing gum, smoking, and the application of makeup are prohibited in laboratories.

All laboratories must have provisions for hand washing with soap and water.

Back to the top


REMOVAL OR SERVICING OF LABORATORY EQUIPMENT

The PI or ALL must certify that laboratory equipment is free of contamination from dangerous chemicals or infectious organisms prior to removal from a laboratory, or on site servicing. Inform service personnel of hazards in the laboratory and any necessary precautions required while working in the laboratory.

To minimize potential exposure, do not handle hazardous agents while service personnel are in the laboratory.

Back to the top


SAFE WORK PRACTICES

Chemical Hygiene Plan

Every PI shall prepare and implement a chemical hygiene plan in accordance with OSHA 29 CFR 1910.1450 for his or her particular laboratory operations. A copy of this plan must be available in the laboratory at all times.

Compressed Gasses

Use and store compressed gas cylinders in accordance with the National Fire Protection Association code, and in accordance with the Compressed Gas Association, Inc., “Handbook for Handling Compressed Gases”. http://www.cganet.com/

Cylinder size for toxic or flammable gasses is limited to 200 cubic feet.

Only open the main valve cylinder as far as necessary to produce the required gas flow and when practical, close valves on gas cylinders before leaving the laboratory at the end of the workday.

Leak test cylinders with a soap solution both before and after attachment of the regulator. Return leaking cylinders to the vendor. Take leaking cylinders of nontoxic, nonflammable gas to a loading dock or other place having suitable airflow.

Leaks from cylinders of toxic or flammable gases require immediate attention. Evacuate the area of a leaking cylinder and contact EH&S for assistance. Wear appropriate respiratory protection and protective clothing if attempting to move leaking cylinders of toxic gas. Turn off any open flames if the gas is flammable.

Identify the contents of cylinders with decals, stencils, glued or wired-on tags, or other markings on the cylinders. Color codes alone or tags hung around the necks of the cylinders are not acceptable. Do not accept cylinders from the vendor without proper content identification, or without valve safety cover in place and properly tightened.

Staff and vendors moving cylinders on the FGCU campus must use hand trucks, carts, or dollies. Do not drag or roll cylinders for distances greater than 3 feet. Do not move compressed gas cylinders if the protective valve cover is not securely in place.

Secure cylinders to walls, benches or stable pieces of equipment or attach non-tip bases before removing the valve safety covers from the cylinders. Cylinders may be secured with chain or canvas straps around the top ? of the cylinder.

Full and empty cylinders must be clearly marked and stored separately if possible. Do not store cylinders containing flammable gases adjacent to oxidizers.

Do not use cylinders without proper tags or labels. Label cylinder “contents unknown” and return to the supplier.

Purchase and use of highly toxic gases requires the prior written clearance of EH&S. Request clearance well in advance of the proposed use as some gases may require facilities and equipment not immediately available.

Design pressurized piping for toxic gasses as a double walled system with the outer wall connected to an exhaust system to scavenge and remove any leaks from the primary piping.

Empty cylinders of toxic gases must be returned to the vendor or disposed of with the assistance of EH&S.

Cryogenic Liquids

The potential hazards that accompany cryogenic liquids may result from the extreme cold which can freeze human tissue on contact, and can cause carbon steel, plastics, and rubber to become brittle. Extreme pressure resulting from rapid vaporization of the refrigerated liquid due to leakage of heat into the cryogenic container or system is another hazard. Finally, asphyxiation due to displacement of air by escaping liquid and the resultant rapidly expanding gas is another potential hazard.

All staff and students handling cryogenic liquids must be properly trained in the use of specialized equipment designed for the storage, transfer, and handling of these products.

Wear gauntlet style cryogenic gloves with elastic at the openings, safety shoes, aprons, and face protection must be worn to prevent possible contact with the extremely cold surfaces of uninsulated piping, transfer connections, valves, and other equipment, or from the cold liquid or boil-off vapors which may result from spilled or splashed liquid.

Conduct transfer operations involving open containers such as Dewars slowly to minimize boiling and splashing of the cryogenic liquid. Conduct these operations only in well-ventilated areas to prevent the possible accumulation of inert gas which can replace the oxygen in the atmosphere and cause asphyxiation.

Ergonomics

Tasks requiring awkward positions, high force, vibration, cold, and/or high repetition can result in injuries. Many tasks performed in laboratories such as using pipettes, microscopes, microtome, and centrifuges can result in these strain or repetitive use injuries.

Always try to work at a bench cutout. If standing for long periods, use supportive shoes and cushioned mats.

Consider the use of mechanical pipettes or other alternatives where appropriate. Using a pipette can involve several ergonomic stressors: thumb force, repetitive motions and awkward postures.

When using a microscope, adjust your chair, workbench, or microscope as needed to maintain an upright head position. Elevate, tilt or move the microscope close to the edge of the counter to avoid bending your neck. Use adjustable eye-pieces or mount your microscope on a 30° angle stand for easier viewing, and keep scopes repaired and clean.

Spread microscope work throughout the day and between people, if possible.

Take breaks from microscope work every 15- 20 minutes to close your eyes or focus on something in the distance. Every 40-60 minutes, get up to stretch and move.

Glassware

Inspect all glassware before use. Do not use broken, chipped, starred or badly scratched glassware. Most laboratory glass, such as Pyrex®, is manufactured from borosilicate glass, and are not suitable for recycling. Normal glass, such as that often found in reagent containers, can be recycled after proper rinsing.

Discard damaged or broken laboratory glassware in containers specifically designated for broken glass – NOT in regular trash. NEVER handle broken glass with your hands- use brooms and dust pans. All broken glass requires special handling and disposal procedures to prevent injury not only to lab personnel, but to members of the housekeeping staff as well. Broken glass disposal containers shall be clearly marked “DANGER - BROKEN GLASS” Limit quantities to no more than 20 pounds so that lifting of the container will not create a situation that could cause back injury.

Sharps

Recapping of needles is prohibited.

Deposit used syringes and needles, without recapping, directly into sharps containers.

Do not dispose of syringes and needles into waste cans, plastic bags, trash baskets or other containers other than as described below.

Place disposable and non-disposable items into separate containers.

Sharp objects such as syringe needles, glass Pasteur pipettes, etc. should only be used when there is no alternative available.

Back to the top


LABORATORY FACILITIES

Electrical

Electrical equipment used in the laboratory must be grounded and connected to circuits protected with ground fault circuit interrupters.

Plug electrical apparatus into sockets that can be reached safely, without exposure to hazards. Plug electrical apparatus used in a fume hood into outlets located outside of the hood. Electrical cords must be as short as practical and placed in ways that minimizes the risk of tripping.

Avoid the use of extension cords as they are for temporary use only. If unavoidable, ascertain that the extension cord is appropriate to its intended use. Consult the Physical Plant Department or EH&S for assistance.

Keep equipment, including electrical plugs and cords, in good repair. Electrical equipment must be unplugged before routine parts replacement or before making internal adjustments. A qualified electrician must make electrical repairs.

Non-sparking electrical switches and motors are desirable in laboratory equipment to prevent combustion of flammable vapors.

Corridors

Laboratory equipment and materials should not be stored in corridors, but the acute space shortage in some buildings has necessitated the limited use of corridors to store some items. Storage of surplus furniture, equipment, or materials is not permitted in corridors.

Corridors must provide a clear evacuation route in case of emergencies and permit responding emergency personnel unhampered access to all areas. Equipment must not extend beyond the wall at a corner.

Equipment must not obstruct exit signs, safety equipment such as fire hydrants, hoses, or extinguisher, alarm panel boxes, fire alarm horns or strobes, electrical panel boxes, etc. In sprinkled buildings, storage must not be within 18 inches of the ceiling.

When necessary, freezers and refrigerators may be stored in corridors if they do not intrude into the minimum clear distance, and provided they do not contain Biosafety Level 3 or 4 infectious agents, hazardous chemicals, or radioactive materials.

Renovation of Laboratory Spaces

Any renovation to University buildings or systems requires written approval from the FGCU Physical Plant Department and the Facilities Planning Department. Examples of covered renovations include, but are not limited to removal of fixed furniture, removal of doors or door hardware, removing or relocating walls, changes to wiring, plumbing, or ventilation systems, painting, and covering or moving any fire alarm system component.

Back to the top


USE OF LABORATORY EQUIPMENT

Use laboratory apparatus only for its designed purpose unless appropriate safety modifications verified as appropriate by a competent person have been made to accommodate the new purpose.

Autoclave

Operate autoclaves in accordance with the manufacturer’s instructions. Post operating instructions and emergency shutdown procedures on or immediately adjacent to the autoclave. Trained personnel must check autoclaves monthly to ensure decontamination effectiveness. Assign responsibility for operation and routine care of the autoclave to trained personnel.

Centrifuge

Instruct each centrifuge operator on proper operating procedures for the centrifuge including balancing loads, selection of proper rotor, head, cups, and tubes, and use of accessory equipment. Consult the centrifuge operating manual, or laboratory supervisor for information and/or assistance.

Plastic centrifuge tubes should be used whenever possible to minimize breakage. Inspect all centrifuge tubes prior to use, and discard broken, cracked, or damaged tubes. Ultra centrifuge rotors require inspections for stress cracks. Use containment cups when centrifuging an infectious agent.

Cooling Apparatus

Do not leave any cooling apparatus connected to the potable water supply running unattended. For cooling requirements beyond 30 minutes, use a self-contained cooling system.

Eyewash Station/Emergency Shower/Drench Hose

There should be at least one eyewash station, emergency shower, and drench hose per laboratory. They may be located at sinks or at any other readily accessible area within 10 seconds travel time. Laboratories using strong acids or bases should have an eyewash station within 20 feet of the hazard area.

Emergency showers should be equipped with modesty curtains and alarms.

The ANSI standard for emergency eyewash and showers equipment (ANSI Z358.1-2004) specifies flow testing for each eyewash station, emergency shower, and drench hose once per week. This test is the responsibility of the PI, ALL, or his or her designee. Perform this test is by activating the unit and allowing the water to flow for 1 to 2 seconds or until the water runs clear. If the unit works and the water flow appears to be sufficient record the test as a pass. If the unit does not activate, the water will not clear, or has insufficient flow, initiate a work order to have the unit repaired and post a sign noting the deficiency.

Once per year, or when requested by the PI or ALL, EH&S will test the eyewash stations and emergency showers for quantity and pattern of flow.

Heating Device

Do not use uncontrolled heat sources such as Bunsen burners and heat guns near flammable substances. Never leave any heat source unattended in the laboratory. Heating devices (i.e. steam baths) which have an incorporated cutoff point are safer than those that do not.  Hot plates, heating mantles, and other heaters must have enclosed elements, controls with a thermal shut-off safety device, and be UL approved.

Microwave oven

Do not heat food for human consumption in laboratory microwave ovens. Completely unscrew caps on screw-cap agar bottles before the bottles are heating in the microwave oven. Wear a long-sleeve lab coat, heat-resistant gloves and face-shields to prevent burns when handling microwave-heated materials.

Lasers

Maintain and operate Lasers in accordance with the American National Standards Institute’s “Safe Use of Lasers” (ANSI Z136.1 – 1992). Contact EH&S for assistance.

Ultraviolet (UV) lights

Do not expose eyes, skin to direct, or strongly reflected UV radiation. Wear adequate eye and skin protection when working in an irradiated area. Face shields, caps, gloves, gowns, etc afford skin protection.

Back to the top


EMERGENCY RESPONSE

In the case of a severe injury requiring professional emergency medical treatment (EMS) call the University Police Dept. at x-1911 and Supervision immediately.

If you sustain a minor injury or are involved in an accident requiring only minor first aid treatment or non-emergency medical treatment, administer first aid, and inform supervision.

See the Human Resources website for instructions pertaining to work-related injuries and Workers Compensation benefits.

All incidents involving potential injuries to employees or students MUST be reported. See the EH&S website for information on required reporting of accidents.

First Aid Kit

Maintain a first aid kit stocked with materials appropriate to the work in a clearly visible location in each laboratory, or at an alternative location accessible and known to laboratory participants. Consult the Material Safety Data Sheets (MSDS), or a medical practitioner for assistance in selecting an appropriate first aid kit. A single first aid kit may be used for a suite of labs under the same PI, ALL, or Department provided it is placed near the area(s) with the highest potential for injuries and is always available to staff.

Chemical Spill

Spills and releases of certain chemicals in excess of their Reportable Quantities require immediate notification of the National Response Center and the State Warning Point. A list of chemicals and their Reportable Quantities is available from the US EPA website. Contact EH&S immediately if a Reportable Quantity of a substance is spilled or released.

In most cases, laboratory personnel should handle spills of hazardous chemicals. Refer spills that laboratory personnel cannot handle safely to EH&S who will contact the proper contractor and/or agency if necessary. In most cases, laboratory spills can be contained and absorbed with equipment in-house.

Laboratories are required to maintain spill control materials in the event of a chemical or hazardous material spill. Commercial spill kits including instructions, absorbents, neutralizers, and protective equipment are available through commercial laboratory supply houses. A single spill kit may be used for a suite of labs under the same PI, ALL, or Department provided it is placed near the area(s) with the highest potential for spills and is always available to staff. Preplanning increases the likelihood a chemical spill will be handled correctly. Ensure that staff and students are trained effectively in cleanup procedures before a spill occurs by considering:

• The likely location(s) of a spill

• Estimated quantities that may be released

• The chemical and physical properties of the material (e.g. physical state, vapor pressure, and air or water reactivity)

• The potential health effects from the spilled material

• The need for any personal protective equipment

• The type(s) of spill absorbents that may be required

Do not use paper towels, rags or sponges as some chemicals (strong oxidizers) may ignite them upon contact. Paper towels, rags, and sponges are inadequate for large spills, as they do not absorb and reduce vapors as well as clay or commercial absorbents. Label and save clean-up debris for disposal as hazardous waste. For more information concerning chemical spill kit requirements for your laboratory, consult the Material Safety Data Sheets (MSDS) for the chemicals in the laboratory’s inventory, or contact EH&S.

Fire

Stored items or equipment must not block access to fire extinguishers.

If a fire alarm sounds in the lab, consider it a fire situation and act accordingly. Shut down any processes and close all fume hood sashes. Leave the building and report to the designated laboratory or department rally point for a head count.

Accident Reporting

All incidents involving potential injuries to employees or students MUST be reported. See the EH&S website for information on required reporting of accidents.

Back to the top


SPECIAL TOPICS

Animals

Contact the FGCU Institutional Animal Care and Use Committee for information

Arsine

Arsine possession or use requires prior written clearance by EH&S.

Biological Safety

Always use Good Work Practices that reduce exposure to harmful (biohazardous) organisms and their products. These organisms may include microorganisms, such as bacteria, fungi, viruses and parasites, and also may include cell cultures, oncogenic viruses, prions, any pathogens of human, animal, or plant origin, as well as venomous vertebrates and invertebrates. Biosafety protects the environment from harm, as well as humans.

Refer to the Center for Disease Control publication Biosafety in Microbiological and Biomedical Laboratories. Contact EH&S, or the Research Safety Committee for assistance.

Corrosives

Purchase corrosive chemicals in containers coated with a plastic film to reduce leakage should the container drop and break. Use protective carriers when transporting corrosive chemicals, and use elevators rather than stairways for travel between floors.

Ethers

Purchase ethers in small containers to prevent extended storage of partially used containers. Store peroxide forming ethers in full, air-tight, amber glass bottles in the dark.

 Explosives

Laboratory hoods offer some protection against explosions, but this is not their intended function. Consider the use of additional shielding engineered to limit damage and personal protective equipment when an explosion is a possibility.

Fluorine Gas

Fluorine gas possession or use requires prior written clearance by EH&S.

Human Subjects of Research

Contact the FGCU Institutional Review Board for the Protection of Human Subjects in Research and Related Activities for information.

Hydrofluoric Acid

Hydrofluoric acid possession or use requires prior written clearance by EH&S.

Mercury

Mercury is highly toxic, and notoriously difficult to detect and recover once spilled. Use of glass mercury thermometers, mercury diffusion pumps, or open pressure measuring devices containing mercury requires prior written clearance by EH&S.

Osmium tetroxide

Osmium tetroxide possession or use requires prior written clearance by EH&S.

Perchloric Acid

Perchloric acid possession or use requires prior written clearance by EH&S.

Radioactive Material Use

Possession or use of radioactive materials requires prior approval by the Radiation Safety Committee. See the Radiation Safety Manual, or contact the Radiation Safety Officer for information.

Reactive Metals

Class D fire extinguishers must be available in laboratories storing or using lithium, potassium, or sodium metals. Class D, or any other “special” fire extinguishers required are available through the Physical Plant Department at an additional expense for purchase and maintenance.  

Back to the top


DEFINITIONS

Academic Laboratory Leader (or ALL)

The Faculty member in charge of an academic laboratory section.

Acutely Hazardous Waste

Solid wastes the EPA has determined to be very dangerous even in small amounts. Wastes listed in the Code of Federal Regulations 40 CFR 261.31 that are followed by the symbol (H), and all of the "P" wastes listed in 40 CFR 261.33 (e), that have been found to be fatal to humans in low doses.

ANSI

The American National Standards Institute is a voluntary membership organization (run with private funding) that develops consensus standards nationally for a wide variety of devices and procedures.

Carcinogen

A material which causes or potentially causes cancer according to the International Research on Cancer, or is listed as such in the National Toxicology Program Annual Report on Carcinogens.

Chemical Hygiene Plan

A written program establishing procedures and policies capable of protecting staff or students from the health hazards presented by hazards in a particular laboratory and meets the requirements of 29 CFR 1910.1450(e).  

Cryogenic Liquid

Cryogenic liquids are gases that have been transformed into extremely cold refrigerated liquids which are stored at temperatures below -130ºF (-90ºC). They are normally stored at low pressures in specially constructed, multi-walled, vacuum-insulated containers.

Corrosives

Chemicals that cause visible destruction of tissue, or irreversible alterations of tissue, by chemical action at the site of contact.

Engineering controls

Engineering controls act on the source of the hazard and control employee exposure to the hazard without relying on the employee to take self-protective action or intervention. Conducting work with hazardous chemicals in a fume hood or glove box, and providing secondary containment in the event of spills are examples of engineering controls.

Explosive

A chemical that causes a sudden, almost instantaneous release of gas, pressure, and heat when subjected to sudden shock, high temperature or pressure.

Irritants

Chemicals which are not corrosive, but can cause reversible inflammation of tissue at the site of contact.

Mutagen

A material that can cause damage to chromosomes.

Noxious

Not necessarily toxic, but irritating or unpleasant; for example a foul odor.

Personal protective equipment

Personal protective equipment includes items such as gloves, eye protection, suitable clothing, and respirators.

Toxic

Any agent that is irritating to or affects the health of humans.

Toxic Gas

A highly toxic gas is one with a cutaneous lethal dose of <200 mg/kg, or is immediately dangerous to life or health in air at <200 ppm.

Back to the top