MATHEMATICS SEMINAR

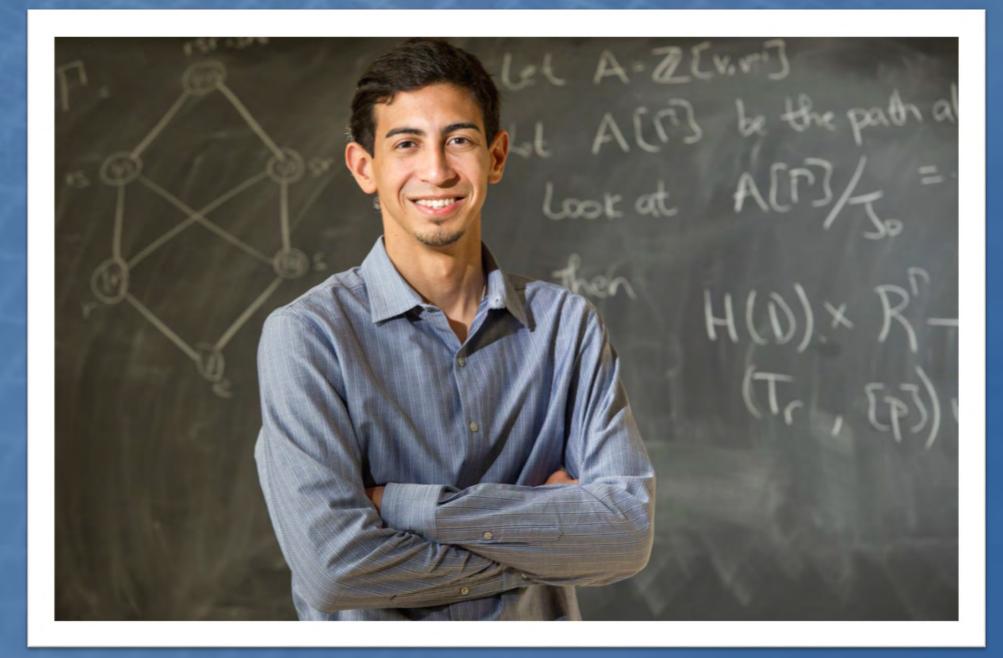
PEAKS AND DESCENTS OF PERMUTATIONS

Given a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n \in \mathfrak{S}_n$, we say an index *i* is a peak if $\pi_{i-1} < \pi_i > \pi_{i+1}$. Let $P(\pi)$ denote the set of peaks of π . Given any set *S* of positive integers, define $P_S(n) = \{\pi \in \mathfrak{S}_n : P(\pi) = S\}$. In 2013, Billey, Burdzy, and Sagan showed that for all fixed subsets of positive integers *S* and sufficiently large n, $|P_S(n)| = p_S(n)2^{n-|S|-1}$ for some polynomial $p_S(x)$ depending on *S*. They conjectured that

the coefficients of $p_S(x)$ expanded in a binomial coefficient basis centered at max(S) are all nonnegative. In this talk, we will share a recursive formula for $p_S(n)$ we use to prove that their "positivity conjecture" is true. It remains an open question to find a combinatorial meaning of these non-negative coefficients. Near the end of the talk, we will discuss various current developments regarding this topic, including some similar questions replacing "peaks" by "descents." No prerequisites.

 \square

Friday, March 24th



3:30 pm – 4:30 pm Seidler Hall 220

Alexander Diaz-Lopez, Ph.D. Visiting Assistant Professor at Swarthmore College 2016-2018 Associate Editor for Notices of the AMS

REFRESHMENTS SPONSORED BY

